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Abstract

This paper describes several methods for the prediction of jet noise. All but one of

the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while

the other is the jet noise generation model recently proposed by Tam and Auriault. 1

In all the approaches some assumptions must be made concerning the statistical prop-

erties of the turbulent sources. In each case the characteristic scales of the turbulence

are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a

k - c turbulence model. It is shown that, for the same level of empiricism, Tam and Au-

riault's model yields better agreement with experimental noise measurements than the

acoustic analogy. It is then shown that this result is not because of some fundamental

flaw in the acoustic analogy approach: but, is associated with the assumptions made

in the approximation of the turbulent source statistics. If consistent assumptions are

made, both the acoustic analogy and Tam and Auriault's model yield identical noise

predictions. The paper concludes with a proposal for an acoustic analogy that provides

a clearer identification of the equivalent source mechanisms and a discussion of noise

prediction issues that remain to be resolved.

1 Introduction

The prediction of jet noise has been the object of continuous interest and study since the

introduction of the jet engine tbr commercial use. The earliest theoretical formulation tbr

aerodynamic noise was the work of Lighthill 2'3 . Lighthill's equation was the first example

of an "acoustic analogy." The definition of an acoustic analogy, to be used in this paper,

is any aerodynamic noise theory in which the equations of motion tbr a compressible fluid

are rearranged in a way that seprates linear acoustic propagation etthcts. By definition, this

rearrangement results in a set of equivalent sources that are assumed to be non-negligible in

a limited region of space. In an apparent departure from tbrmulations based on the acoustic

analogy, Tam and Auriault 1 have recently developed a jet noise prediction method in which



the soundsourcesaremodeledexplicitly and the propagationof soundfrom thesesources

is describedby solutionsto the linearizedEuler equations. Thesetwo aerodynamicnoise

theoriesappearto be very different. In this paperwe reconciletheseapparentdifferences

andshowthat if consistentassumptionsaremadeconcerningthe statistical propertiesof the

turbulent noisesources,both approachescanyield identicalnoisepredictions. It shouldbe

notedthat this reconciliationhasonly beendemonstratedat 90degreesto the jet axis. The

differentapproachescould leadto very differentresultsat otherangles.

In orderto makepredictionsof theradiatednoiseit isnecessaryto describetheproperties

of theturbulence.Sinceacompletesimulationof the jet turbulenceandthe noiseit generates

and radiatesare too computationallyexpensivetbr high Reynoldsnumberjet flows,noise

predictionsareoftenbasedon the solutionof the Reynolds-averagedNavierStokes(RANS)

equationsusing a k - e turbulence model. Such a solution provides an estimate of the

amplitude of the turbulent velocity fluctuations as well as a local length scale. Since the k - e

solution only provides time-averaged properties, it is necessary to make assumptions about

the statistical characteristics of the turbulence in order to predict the noise radiation that is

an inherently unsteady phenomenon. In particular, the axial two-point cross correlation of

the turbulent sources must be approximated. This correlation may be described in either a

fixed frame of reference or a reference frame moving with the turbulence.

One of the earliest attempts to couple estimates of the statistical properties of the turbu-

lence from a steady flow prediction with a noise model based on the acoustic analogy was the

MGB approach developed by Mani, Gliebe and Balsa: see Balsa and Gliebe. 4 More recent

extensions have used RANS solutions for the flow field based on a k - e turbulence model.

This has been referred to as the MGBK method: see Khavaran et al. 5 and Khavaran. 6 In

developing a solution to the acoustic analogy equations these methods assume a tbrm tbr the

two-point cross correlation thnction tbr the turbulent sources in a moving frame of reference.

Conversely, Tam and Auriault, 1 who also use RANS solutions tbr the flow field based on a

k - e turbulence model, describe the two-point cross correlation in a fixed reference frame.



It isshownin this paperthat, tbr thesameRANSsolution,jet noisepredictionsmadewith

the Tam andAuriault model1givemuchbetter agreementwith experimentalmeasurements

at 90degreeesto thejet axis than methodsbasedon the acosuticanalogy.However,it will

alsobe shownthat this is not due to any inherent flaw"in methodsbasedon the acoustic

analogy:but, is associatedwith the assumptionsmadeconcerningthe statistical properties

of the turbulent sources.Both approaches yield identical noise predictions at 90 degrees to

the jet axis if consistent descriptions of the turbulent sources are chosen.

This paper is organized as tbllows. First a noise prediction tbrmula based on Lighthill's

acoustic analogy is developed. It is denoted here as Model I based on the acoustic analogy.

The features of Tam and Auriault's noise prediction model 1 are then described. Another

model based on the solution to Lighthill's equation is then tbrmulated using the solution

procedure of Tam and Auriault) This is designated as Model II based on the acoustic

analogy. The reasons tbr the ditlerences between the noise predictions obtained with the

different approaches are discussed and these ditlerences are reconciled. Finally, an alternative

tbrm of acoustic analogy is proposed. It is argued that this tbrln allows tbr the easier

identification of the equivalent noise source mechanisms.

2 Lighthill's Acoustic Analogy: Model I

In this section we develop a prediction scheme based on the solution to Lighthill's equation.

The details of the methodology do not tbllow those of the MGBK approach exactly. This is

because the fbcus of the present paper is on noise radiation at 90 degrees to the jet axis, where

mean flow/acoustic interaction etteets are negligible. It is at this angle that the specification

of the source and its assumed relationship to the k - c solutions is best assessed. Also, it

is intended to keep the assumptions made and the level of empiricism used as consistent as

possible between the ditterent schemes described in this paper. So, the possible importance of

the effects of anisotropy of the turbulence on the radiated noise, as proposed by Khavaran, 6



is not included. The analysisin this sectionfollowsthat givenby Goldstein7 and Lilley in

Chapter4 of Hubbard.s It is repeatedin sufficientdetail hereto emphasizeanyassumptions

madeand the difterenceswith the alternativeapproachespresentedin later sectionsof the

paper.

Lighthill's equation2maybewritten in Cartesiantensorform as,

02 Pt 2 c92P_ 02Tij
- (1)

Ot2 - c° OxiSxi OxiSxj

where Tij is the Lighthill stress tensor given by

2 (2)

and primes denote perturbations about the basic state denoted by a subscript o. Co is a

constant speed of sound that is sensibly taken to be the speed of sound in the uniform

medium surrounding the source region, ui is the instantaneous velocity vector. Viscous

terms have been neglected in the Lighthill stress tensor. In the subsequent analysis it is

assumed that the departures from isentropic behavior are everywhere small and that the

flow is at relatively low Mach number. Since we are concentrating on noise radiation at 90 °

to the jet axis it is also assumed that the primary contributions to the Lighthill stress tensor

involve products of velocity fluctuations. The terms that are linear in the fluctuations on

the right hand side of Eqn. (1) should be regarded as terms associated with the propagation

of the sound and be placed on the left hand side of the equation: see Lilley. 9 These effects

are negligible at 90 ° to the jet axis so this assumption is reasonable here. So we approximate

the Lighthill stress tensor by

Ti j t t= p_uj (3)

where Ps is the mean density in the source region. In the far field the density fluctuation is



readily shownto begivenby

(/// ,x_,,)p' (x,t) - 4rrc4xjjj ot_Txx y,t Co- dy
V(y)

(4)

where T._; is the component of the Lighthill stress tensor in the direction of the far field

observer and a = Ix - yl _ Ixl.

The far field spectral density for the intensity is related to the Fourier transtbrm of the

autocorrelation function of the far field pressure.

oo

1 f O' (x,t)p' (x,t + 7)>_i_&s (x,_) = _ polo
--OO

(_)

where ( } denotes an ensemble average. Since, in the far field, p' 2 ,= Cop we obtain

oo

S(x,_)- _ / °_x
327rapoCSoZ2 / / / \_T-(Yl

-o¢ V(yl) V(y2)

02rxx },tx) _- (y2,t2) ei_dyxdy2dr (6)

where

tx = t Ix-yxl (7)
Co

Ix- y_l
t_ = t + r (8)

Co

If the turbulent statistics are assumed to be stationary and the usual far field approximation

is made we obtain,

oo

X (x,w) -- 32rC3poC5X2 _T 4 {Txx (YI, t) T_x (Y2, to)} eiWrdyldy2dT
--O_ V(yl) lJ(y2)

(9)



where

X (Y2- Yl)
ro = t + r + -. (10)

X CO

The two point cross correlation tunction of the Lighthill stress tensor in a fixed reference

frame may be denoted by,

R.f(yl, rL _-) = (Txx(Yl,t)Txx(y2,t + T)} (11)

where r/= Y2 - Yl, then,

oo

024

S(X,02)-- 8271.3poC5X2 / / / Rf(yl,

--00 V(yl) V(V)

(12)

As noted by Lighthill 2,a and others, it is best to include as many properties of the source

as possible prior to any modeling of the turbulent sources. To include the etfec_s of source

convection the statistical properties of the sources may be described in a moving frame of

ret>rence. This also has the advantage that it is the temporal variation in this frame that

controls the noise radiation. In a fixed reference frame, the temporal variation is dominated

by convection effects. For example, as noted by Goldstein, r a frozen pattern of' turbulence

convecting subsonically would radiate no noise. However, its local time variation would

depend on the convection velocity and the turbulent length scales and would not be zero.

Let

{ = rl - icoMJ (13)

where, i is a unit vector in the direction of the mean flow and Mc is the convection Mach



numberof the turbulent eddies.This gives

oo

_4 j' j" j" { [ X _]}X(x,_)- 32_,o4X_ exp i_ (1-_Vr_cos0)_--_._ ×
--00 V(yl) V(_ c)

Rm (Yl, _, 7-)d_dyld7 (14)

where /Zm denotes the two-point cross correlation function of the Lighthill stress tensor in

the moving refhrence frame. Also,

cosO= _1/_ (15)

The wavenumber/frequency spectrum of the turbulent sources is given by

oo

1.I.1.o. 112 14/ /
v(_) -_

ei(_'r-a'5)i_m (Yl, _, 7)d_dT (16)

where c_ is a wavenumber vector. This describes the spatial and temporal periodicity of the

source. Then,

S (X, Cd) -- 2[9oC5 X2 H Yl,-

V(yl)

,w(1--1F/ccos0 dyl (17)
XCo

This shows that the far field noise depends on the components of the source wavenum-

ber/frequency spectrum with a wavenumber that gives a sonic velocity in the direction of a

far field observer and at a Doppler shifted frequency.

To this point, other than the far field assumption, no approximations have been made.

However, to proceed further, it is necessary to introduce a model tbr the two point cross

correlation. It is usually assumed that, in the moving frame of rethrence, the correlation



takesona Gaussiantbrm (seeFtbwcsWilliams1°and Lilley8),

= .q psu8 exp (18)

where, & is a characteristic length scale, w_ is a characteristic frequency in the moving frame,

u, is a velocity scale that characterizes the turbulent velocity fluctuations, and A determines

the magnitude of the correlation. Here, it assumed that the characteristic length scale is the

same in all directions. This restriction could easily be relaxed. It should be noted that this

is simply a model tbr the turbulent statistics in a moving reference frame. It is not art exact

relationship. Then,

)}--,_ (1 - M_ cos 0
H Yl, XCo

2 4 71 Jds

T7/exp - exp 7

where, _ is the magnitude of the wavenumber vector. Now,

(19)

02868 ns
a& .... m (20)

Co Co

where m is a characteristic Mach number tbr the turbulence and provides a measure of the

compactness of the source region. For compact sources, rn << 1, so that at 90 degrees to

the jet axis we obtain,

2 4 3 3 &;

S (x,w) -- 327rpoC_X2 P*U*&Ws E exp - dyl
V

(21)

If a RANS k - c solution is available it is possible to determine the contribution of each

elemental volume in the numerical grid to the radiated noise spectrum. Here, k and e are

the turbulent kinetic energy and visous dissipation rate per unit mass respectively. From



equation(21)this contribution is givenby

2 4 3 3 ix)

dS (x,_) - 32_rpoCSoZ2 p_QcJ_ exp -_ _v (22)

The length and time scales may be obtained from the k - c solution. We assume that

_ = 2_-/_-_,_-_= _(k/_), and e_= _(k_/_/_). (23)

The k - c solutions indicate that, along the location of maximum shear, both % and Q vary

nearly linearly with axial distance. Then, with u, = X//_-/3,

4 9_oC_X2_kT/_ E exp - _v (24)

In this form there are only two combinations of constants that may be determined by com-

parison with experiments. The factor

describes how each volume element contributes to a range of frequencies about the local

characteristic frequency w_.

Figure (1) shows a comparison of the predicted radiated noise with experimental data

by Tanna et al. u The one-third octave experimental data have been converted to spectral

density assuming a smooth spectrum. The jet is operating at Mj = 0.911 and Tj/To = 0.975.

The jet diameter is 0.0508 m and the observer location is at 90 ° to the jet axis at a distance

of 72 jet diameters. The k - c solution has been obtained using the code developed by Thies

and Tam. 12 The grid is described by Thies and Tam. 12 It grows in physical size in a stepwise

manner as the solution is marched in the axial direction. For the present calculations the

solutions are saved at every quarter of a jet diameter downstream. The volume of the



elementsis determinedby the radial grid spacing,with a constantaxial spacingand an

axisymmetricassumption. The coefficientsusedin the noisepredition are c_= 1.43and

A2c a = 1.93 × 10-2. The predicted spectrum has been matched to the measured spectrum

at the peak frequency. The predicted frequency variation of the spectrum increases as f2 at

low frequency and decreases as I .-2 at high frequencies. The much faster decay at very high

frequencies is due to the lack of resolution in the flow prediction near the nozzle exit. It

is clear that the behavior of the experiments is quite different. The experimental variation

of the spectral density increases approximately with f at low frequency and decreases as

f-1 at high frequencies. Figure (2) shows how each axial slice of length Dj of the

jet contributes to the total spectrum. The spectral shape of the contribution of each axial

slice is determined by Eqn. (25). The slices near the jet exit provide the high frequency

contributions to the spectrum and the peak frequencies of the spectra decrease monotonically

in the axial drection. It is clear that this spectral distribution is unable to provide sufficiently

high levels away from the peak, particularly at low frequencies.

3 Tam and Auriault's Method

In a recent development, Tam and Auriault I developed a model tbr noise radiation from

"small-scale" turbulence. As the name suggests, this model, they argued, accounts tbr the

noise radiation by the small-scale components of the turbulence. In an earlier paper, Tam

et al. la had shown how experimental noise data tbr a wide range of jet operating conditions

could be correlated extremely well with two shapes of spectral density function. One, with

a well-defined peak and relatively rapid decay at high and low frequencies, was associated

by Tam et al. la with noise generated by the large-scale structures in the turbulence. This

spectrum matched the experimental noise data at small angles to the jet axis (including the

peak noise direction). The second spectrum shape was much broader, similar to the measured

spectrum shown in Fig. (1). This they associated with noise from the small scale turbulence

10



and it matchedthe measuredspectrumat largeranglesto the jet axis. Tam and Auriault1

arguethat their noisepredictionmodel providesa descriptionof the latter mechanism.It

shouldbe noted that there is no direct evidencethat thesetwo separatemechanismsare

actually responsibletbr the total noiseradiation: but, theexperimentalcorrelationsandthe

successof the modelcannot beoverlooked.

Betbreprovidingsomeof thedetailsofTamandAuriault's analysis,it isusetulto summa-

rize the difl'ereneesbetweenthe modelof the previoussectionbasedon the acousticanalogy

and Tam andAuriault's modelaswell asthe differencesin the developmentof a prediction

formulafor the far field noise. Firstly, the Lighthill equationis basedon the thll equations

of motion whereasTam and Auriault's modelcontainsa heuristicargumentto describethe

noisesourceand usesthe linearizedEuler equationsto describethe propagationof sound

generatedby the modelsources.In the modelbasedon the acousticanalogyit is assumed

that the sourceis compactand the two-point crosscorrelationtunction tbr the sourceis

modeledin a moving referenceframe. The Green'sfunction in the model basedon the

acousticanalogyis simply the free spaceGreen'sthnction for the waveequation. In Tam

and Auriault's method1there is no explicit assumptionconcerningthe compactnessof the

source,(thoughcompactnessis implied at onepoint), the two-point crosscorrelationfunc-

tion is tbrmed in a fixed frameof reference,and the Green'sthnction is obtainedfrom the

adjoint solutionof the linearizedEuler equations.A final differencebetweenthe two tbrmu-

lations is that the far field noisedependson amodeltbr the crosscorrelationof the Lighthill

stresstensorin the modelbasedon the acousticanalogyand on the crosscorrelationof the

convectivederivativeof the sourceterm in Tam and Auriault's model. The consequenceof

this differenceis examinedin a later sectionof this paper.

In Tam andAuriault's model1 it is proposedthat the small scaleturbulencegeneratesa

local pressurefluctuation that is proportionalto the local turbulent kinetic energyper unit

11



volume.Tam andAuriault notethat, in the kinetic theoryof gases,the pressureis givenby

1 1
p = _._,_<v.v>= 5_ <v2} (26)

where v is the random molecular velocity, p is the density of the gas, and { ) denotes an

ensemble average. Invoking a direct analogy, the small scale turbulence is considered as

small blobs of fluid that interact in each element of the turbulent flow. They argue that the

resulting pressure is related to the kinetic energy of the fine-scale turbulence. That is,

1 2 k (27)

where ks is the kinetic energy of the small-scale turbulence per unit mass. It is argued that

once sound is generated by these local pressure fluctuations, the propagation of the noise

may be described by the linearized Euler equations with a "source" term on the right hand

related to the fluctuating pressure gradient generated by the fine-scale turbulence. That is,

[a,a: a< ,a_,] ap'_ 0% (2_)Lat + _j_ --_Joxjj + ax.j 0_i

' and p' denote acoustic field variables. Thewhere, an overbar denotes a mean quantity and u i

sound waves are also assumed to satisfy the linearized equations of energy and continuity

and the equation of state tbr a perfect gas. That is,

Op _ 8ui

Tam and Auriault _ then write the component equations in cylindrical polar coordinates

(r, ¢, x) and assume that the mean flow is parallel.

Rather than converting the operators on the left hand sides of Eqns. (28) to (29) into the

Lilley equation, 9 Tam and Auriault 1 make use of the adjoint equation. This is a very elegant

12



approachto describethe meanflowacousticinteractioneffects.A completedevelopmentfor

three-dimensionalmeanflowsis givenby TamandAuriault.14Tam andAuriault I showthat

the periodicGreen'sthnction tbr the linearizedEuler equationsis relatedto the solutionof

the adjoint Eulerequationsby,

_l(xo, xl,_) = _a(xl,xo,_)

_2(Xo,Xl,_) = va(xl,xo,_)

p3(Xo,Xl,_) = Wa(Xl,Xo,O2)

(30)

/_n for n = 1, 2, 3 are the Green's fhnctions tbr sources in the x, r, and 0 components of

the linearized momentum equations respectively and. ua, %, and wa are the solutions to the

adjoint linearized momentum equations. Note the reciprocal dependence on Xo and Xl. The

adjoint equations may be written,

_o_a I _opa

Ova d_ } _/fi 0 (par)+ _ Ox dr ua + r Or - 0 (32)

_Owa ] _ opa'i_a + _-x _ + _ O0 -- 0 (33)

0 (_a_)+ ___ + _ _(x - Xo) (34)
+ Or r O0 Oz J 2_

With the Green's functions known, the general solution is given by the convolution of

the Green's functions, or adjoint solutions, with the source terms. That is,

p'(x,t) = -JJjjJ{v_.[ua(xl,x,_)q,(x,,tl)]

-% (xl, tl) VI" [u_ (Xl,X,W)]} × exp[-iw(t- tl)]dcJdtldXl (35)

13



where

0 0,1 0) (36)

and

u_ (xl, xo,_) = G, vo,_,_](xl, Xo,_) (37)

However, the divergence of the adjoint velocity is known from the equation tbr the adjoin_

pressure Pa, given by Eqn. (34). Also, q, is zero at the source point tbr the adjoint solution,

so that

/jjjj(pt(x,t) z -- iCdpa q- U_.T.1) (x1,x,_)qs(Xl,tl)exp[--i_(t-- _l)]dcdcl_ldX 1 (38)

or,

///jj(op'(x,t) = - 0tl + {p_exp[-iw(t-tl)]}%(xl,tl)dwdtldxl (39)

It is important to note that, at this stage of the analysis, the convective derivative acts on

the adjoint solution. However, integration by parts yields,

jjjjjp'(X,_) = [pa(Xl,X, Cd) exp[--iCd(_-- *l)]]_.l {qs(xl,_l)}dcod_ldx 1
(40)

where the convective derivative is given by

u o
Dr1

The spectral density for the intensity is then obtained by forming the autocorrelation for

the pressure and taking it's Fourier transtbrm, as given in Eqn. (5). The spectral density is

14



then foundto begivenby

Six, co)
• "" pa (XI,X, COl)Pa(X2,X, CO2) _,1 {as (Xl,tl)}D_2 {as (x2,_2)}

× exp [-i (col -4-co2) t q- icoltl q- ico2t2] d_(co - co2) dcoldco2dtldt2dxldx2 (42)

Again, as in models based on the acoustic analogy, it is necessary to make some assumption

about the correlation function tbr the source terms. Based on experimental measurements

of the two-point cross correlation of the axial velocity fluctuations in a fixed rethrence frame,

Tam and Auriault 1 assume that

_1 {qs (Xl,tl)} _2 {qs (X2,_2)} -- C2_s2'exp _tTs 1 [(___57)2+712+_2]} (43)

where,

= 2;1 -- 2;2, 7] = _/1 -- Y2, ¢ = Zl -- Z2, r = tl - t2 (44)

It should be noted again, as in Model I, that this is a major assumption and it is only

supported indirectly by experimental measurements. In addition, the turbulent statistics

are modeled in terms of the cross correlation of the convective derivative of the source. This

is shown below to be a crucial choice in the tbrrnulation.

Following the sequence of integrations given by Tam and Auriault 1 it is straightfbrward

to show that

S (x, co) poCo p_(xl,x, -co)po(x_,x,co)c_

4_ exp --- + icol_ [,_ + 4_] _xl_x_ (45)

Tam and Auriault 1 argue that the difference between p_ (Xl, X,--CO) and p_ (x2, x, co) is a

15



simplephasefactor suchthat

Pa (Xl,X, --ta)) -- Pa (X2,X,_) exp - _ cos0 (xl - 2;2)
(46)

0 is the polar angle measured from the downstream jet axis. This implies that the sources

have a limited spatial extent. That is, the length scale g_ is small compared to the total

extent of the source region. Thus, this model would not be appropriate for large scale or

non compact sources. They also note that,

p_(x_,x, -_) = p_(x_,x, _) (47)

The integrations with respect to x 1 may now be replaced by integrations with respect to

the separation distance ( = Xl - x2 The spectral density is then tbund to be given by,

S (x,w) - 47r2v_///" IPa (X2,
floCo d d d

x,_)l 2 -- exp {-_2g_/(4_2)}
c27-_ _[1 + c_27-;2(1 - _ cos O/a_)]dx2 (48)

In order to obtain a closed form result it is necessary to determine IP_ (x2, x, cJ)l 2. Since at

0 = 7c/2 the effects of the mean flow are negligible, the equations for the adjoint functions

(31) to (34) may be reduced to a Helmholtz equation tbr the adjoint pressure,

god

V2Pa + k2P_ = 27rC45o(x - x2) (49)

So that,

IPa (x2 x,w)l 2 -- w2
, 647r4Co4X2 (50)

16



Then, from equation(48), with 0 = 7r/2, we obtain

167CepoCSoXeJJJ c2T8 _ (1 +c_2T_) dx2 (51)

With the scales given by Eqn. (28) and q_/c 2 = 4A2p_k2/9, the contribution to the spectral

density from an elemental volume of the turbulence is given by,

2 7/2  2c;
dS(x,_,) = 9poCSoZ2 c_ Gk (l+47r2a_2/a_) exp G2 a,2_22 dV (52)

This is very nearly the same result as given by the Lighthill Acoustic Analogy in equation

(24) except tbr the Dequency weighting thnction.

(1+ exp

Figure 3 shows a comparison between predictions based on Tam and Auriault's model and

experiments. The agreemen_ between the predictions and measurement is excellent. This

excellent agreement tbllows that shown by Tam and Auriault I tbr a very wide set of jet

operating conditions. The coefficients used in the present prediction based on Eqn. (52) are

c; = 0.308, ce = 0.130, and A = 0.773. These are similar to the coefficients determined by

Tam and Auriault _ . Also shown in Fig. 3 is a prediction of the spectral density based on the

coefficients determined by Tam and Auriault _ . It can be seen that their predicted spectral

density falls more rapidly at higher frequencies than the present predicted spectrum or the

measurements by Tanna et al. M However, Tam and Auriault's predictions agree well with

measurements in other facilities. This shows how the values of the coefficients are influenced

by the choice of experimental data. However, fbr both sets of coefficients, the values are

arguably more reasonable than the value of c; obtained in Model I that was greater than

unity.

17



4 Lighthill's Acoustic Analogy: Model II

In this section we will tbllow the same general approach used by Tam and Auriault: 1 but,

here we apply the method to Lighthill's acoustic analogy equation. The starting point is

Eqn. (1). The Green's thnction is given by the solution of the equation

02G 2 02G

0t 2 - Coo_iOx _ - 0_(x - xl)6(t- tl)
(54)

We seek a periodic Green's thnction such that

oo

j.C(x,x_,t,t_) = O(x,x_,_)exp[-ico(t-t_)]_
--OO

(55)

Then, the Fourier transtbrm of equation (54) gives

(v_ + k2)d(x, xl,co) -
O-(x- x_)

2_rCo2
(56)

The adjoint thnction G_ (x, x_, co) now satisfies the equation,

(V _ + k_) G_ (x, x_, co)-
6(x-x_)

27rCo2
(57)

and it is readily shown that,

(58)

Thus the far field density may be written

p' (X,_) : /JJjj'_a (XI,X, CO ) O2Zij
OXliOXlj (Xl, tl)exp [--ico (t -- _1)] dcodtldXl

(59)

18



The subsequentanalysisis simplifiedif the derivativesaretransthrredonto the adjoint func-

tion by integrationby parts. That is,

OXliOXlj (Xl,X, Cd)Zij (xl,tl)exp [-i_ _ (t - _1)] dcddtldXl
(60)

The spectral density tbr the intensity is defined by Eqn. (5) and is given by,

s (x,_) 3]]]. /j].O2aa 02aa
Co

no "" (_XliOXlj (Xl'X'tdl) 02;'2k0X2_ (X2'X'td2){Tij(xl'tl)Tk_(x2't2))

X exp [--i_ 1 (i_- _1) -- i5d2 (t -- t2)l (_ (5d -- 5d2)d_dldtd2d_ldt2dxldx 2 (61)

It is now assumed that the two point cross correlation of the Lighthill stress tensor in a fixed

frame of reference is given by,

(Tij (Xl, tl) rk_ (x2, t2) ) 24 { I_1 1 7] 2 }
= A_yn_ exp _ [(__ _)2 + + ¢_1 (62)

Then,

S (x,cJ) 3ffj]. jjj. O2Ga O2Ga
Co

no "" OXliO2glj (xl' X, 5dl) (_X2k(_X2g (X2, X, ix)2)

2 4 { [ IXI- X21 1 ((2S1 3;.2) _(_1 _2))2
× Aijk_Ps us exp -- -- -

+ (yl - y2)2+ (_ - _2)2]}

Again, tbllowing the sequence of integrations given by Tam and Auriault, _ we obtain,

S(x,_) no JJJJJJ oz_oxlj (x_, x,,-_) oz2kOx2e (x2,x,_) A_yn_u_

× e_p _ ] exp _ _ e_ (_12+ 42) _x_x2 (64)
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The solution to Eqn. (57) is

a_ (xl,x,-_)=
1 exp[ikIx1- xl]

8_2C_o IXl- xl
(65)

It may be shown that as Ix1 - x] --+ oc,

OXliOXlj

(x,, x, -w) Og_
" Oz2kOx2e [ x](x2,x,w)- 647r4c_x2_i_j_k_ exp iw (x2- xl) • _c °

(66)

where/_i = (xli- xi)/x, etc. are direction cosines. Then, at 0 = 7c/2 where, (x2 - Xl).X/X

0, the far field spectral density tbr the intensity may be written,

S (x,w)
24 8

32_3poCSox2 H JJJ]__,_222p_u_=_,

4_ 2 exp _;% 1 }d ('_ + ¢2) _¢_x2 (67)

With A2222 = A 2, and tbllowing the integrations with respect to (, we obtain

///,_,,/_ (_-_)_ (wd)S(x,_)- '/_ A_ ..._ 43
167r2 5 2 w2,r_] exp \ dx2poCoX J J J 7-13 [1 + 4'a 2 ]

(6s)

Using the scales defined by Eqn. (23) and with u_ = V/_-/3, the contribution to the spectral

density from each volume element of the flow may be written,

(dS (x,_) = _2v_ A24z_W/_ exp 4_ 5? dV9poC5ox2 c3 (1 + 47chv2/w_) c_
(69)

This is essentially the same result obtained from Tam and Auriault's model 1 except for the

slight but significant change in the frequency weighting factor
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Figure4 showsacomparisonof predictionsmadewith all threemodelswith experimental

data. The coefficientsusedin the Model II prediction are, c_ = 1.0, ce = 0.78, and A =

0.8475. Clearly, the Model II prediction is an improvement over that made with the Model

I version based on the acoustic analogy. Some of this is due to the additional freedom to

specit) three independent coefficients unlike the two available tbr Model I. However, the

shape of the spectrum is still not as well predicted as that given by Tam and Auriault's

model s for the same level of empiricism.

In the next section, we consider the final dift>rence between the various models: the

specification of the turbulent source statistics.

5 Models for the Turbulent Source Statistics

In the previous sections it was shown how a model based on the acoustic analogy failed

to provide as good a set of noise predictions as the Tam and Auriault model I even when

the problems were tbrmulated in the same manner. However, there remains one issue to

be considered: how the statistics of the turbulent sources are described. Tam and Auriault

model the source statistics with Eqn. (43) whereas the model of the last section used Eqn.

(62). In the tbrmer case it is assumed that the cross correlation of the convective derivative

of the source term tbllows the experimentally measured cross correlation of the axial velocity

fluctuations in the jet. In the latter case, it is assumed that it is the cross correlation of

the Lighthill stress tensor that tbllows the measured tbrm. In this section the two prediction

schemes are compared when consistent tbrms of the statistics of the turbulent source are

used.

There are two ways to modit_ Tam and Auriault's model s to make their assumptions

consistent with Model II. The first is to retain the convective derivative operators on the

adjoint solution in Eqn. (38). Once the fbrm of the adjoint solution is obtained, the operators

may be applied in a straightfbrward manner. However, in the general case, when the adjoint
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solution is obtainednumerically,it is asconvenientto still pertbrm the integrationby parts

and usethe form for the spectraldensitygivenby Eqn. (42). However,it is nowassumed

that the crosscorrelationof the sourcefunction maybewritten,

<qs(Xl,td)qs(x2,_2)) = _-exp [(__ _7_)2 + +_2] (71)

This is consistent with the assumption made in Eqn. (62) tbr Model II based on the acoustic

analogy. The cross correlation required in Eqn. (42) is,

< Dq8 Dq_ > D 2(xl,tl) _ (x2,t2) -- DtlDt2 (qs (Xl,tl)qs (x2,t2)) (72)

The derivatives may be written in terms of the time delay 7- and the axial spatial separation

distance _ such that,

DtlDt2 - _ + e (73)

Now, if

f=f((--_.T) then _+_; f=0 (74)

Thus,

(Dq_ Dq_ }Dtl (Xl'tl)_2_2 (X2't2) 0_ {-_ [(_-_)_+ +d]}c2_2 exp ] _]2

(75)

If this result is substituted into Eqn. (42) and the integrations with respect to cJ1, :z2, tl and
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t2 are pertbrmed, we obtain,

2TCV/_ 'pa (Xl,X,___O) pa (X2,X, CO) _,_'s_l,

floCo

x exp c_ % 1
4_ 2 exp -g_ (_j2+ff2

a2 [exp (--_)] exp (--__)dxldX 2
(76)

The adjoint solutions may be replaced by the tbrm given by Eqn. (50). Then the integrations

with respect to Xl may be replaced by integrations with respect to (. The integrations with

respect to 7] and ff are readily pertbrmed as befbre. However, the integration with respect to

now takes the tbrm,

oo

[ox (_5)1
--OO

(77)

This integral may be rewritten in terms of a new variable z = _/(g_-,), such that,

oo

f_lf ?)2Ctw_ OT [exp (- ]z])]exp (-icJw_z) dz (78)

Since the first term in the integrand must be treated as a generalized thnction, due to its

discontinuous behavior at { = O, integration by parts should be pertbrmed betbre the integral

may be evaluated. This is discussed in more detail in an Appendix to this paper. This gives,

oo

f[ -- 1 exp (-I_1) [exp (-/_9%z)] dz (79)

--00

O0

-- w2n{ / exp (-I_1 - i_-_) d_ (80)

moo

The integral may now be evaluated by separating the integral into the contribution from
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-co < { < 0 andthat fl'om 0 < { < oc. This yields,

2_2%

I - (81)

The use of Eqn. (50) tbr the magnitude of the adjoint pressure then gives the final result tbr

the spectral density,

qs % exp dx2S (X, CU) -- V/_ 1 " " ' (5dTs) 4

16 2 (1+ (82)

If A2 2 2 2 4qs/c is set equal to A ps.u_ this is exactly the result given by Eqn. (68) tbr Model II based

on the acoustic analogy described in the previous section.

Thus it may be stated that: both Model H based on the acoustic analogy and Tam and

Auriault's model I yield identical noise prediction formulas at 90 degrees to the jet axis if

consistent assumptions are made in the statistical description of the turbulent sources.

6 Discussion

In the previous section it was shown that both a model based on an acoustic analogy and Tam

and Auriault's model 1 yield identical noise prediction tbrmulas if consistent assumptions are

made concerning the statistical description of the turbulent noise sources. This might appear

to be a somewhat negative result, as it shows that the recent model by Tam and Auriault _

would give as poor a prediction as models based on the acoustic analogy tbr the same source

descripBion. However, it could be viewed as providing guidance on what assumptions should

be made in the source description if good predictions are to be made. One could obtain

a noise prediction tbrmula identical to that given by Tam and Auriault I in Eqn. (52) in a

number of ways. For exainple, only two of the spatial derivatives acting on the Lighthill

source term correlation in Eqn. (59) need to be transi_rred to the Green's functions. Then

an assumption could be made that the two-point cross correlation of the new "source" term
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is givenby

(xl,tl) _ (x2,t2) = ,_ d exp - [(_- _)_ + _12+ ¢_]}d
(83)

However, this is just as arbitrary an assumption as that made by Tam and Auriault _ in

proposing the tbrm of two-point cross correlation given by Eqn. (43). Alternatively, we need

to find a form of two-point cross correlation thnction for the Lighthill stress tensor that would

give the form assumed by Tam and Auriault I when the convective derivative operations are

applied, as in Eqn. (72). This is no easy matter because of the discontinuous derivative of

the assumed correlation at _ = 0. However, as noted by one reviewer, I_1 could be replaced

by V/_ 2 + _2 and letting 5 --+ 0 in the final result.

In the remainder of this final section we propose an acoustic analogy tbrmulation that

includes, as a part, the source description proposed by Tam and Auriault 1 : but, it also

identifies other physical mechanisms that are equally good candidates for noise sources.

Other tbrmulations of this type could be proposed: however, our tbrmulation is based on

equations of motion written in terms of the logarithm of the pressure.

The equations of continuity, momentum and energy, and the equation of state tbr a

perfect gas, may be rearranged in the form,

D71- 07_ i

Dt Oxi
(84)

and

Dui c_
- _ (85)

Dt Oxi

where

rr = - In , (86)
7
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D 0 0

Dt - at + uj Oxj (87)

and Po is the mean static pressure that is assumed to constant. Equations (84) and (85) may

be recast in the tbrm of a third-order equation [Lilley, 9 Colonius et al.15],

If the variables in this equation are linearized about the mean thermodynamic properties

and a parallel mean flow, given by,

(x,t) = u x3)5,1+ (x,t) (89)

Lilley's equation 9 may be obtained in the tbrm

A detailed expansion of F is given by Colonius et al. 15 All terms in F are at least second

order in the fluctuations. In the limit of infinitesimal disturbances the equation reduces to

a homogeneous equation that describes the propagation of sound in a parallel shear flow,

such as that developed by Pridmore-Brown. _6 Also, as noted by Colonius et al., 15 it is in the

tbrm of an acoustic analogy since it is equivalent to the equation that describes the pressure

fluctuations generated by an external distribution of stresses (and other source terms that

are often neglected) imposed on a parallel shear flow.

Alternatively an acoustic analogy could be equally well tbrmed by simply splitting the

variables in Eqns. (84) and (85) into their mean and fluctuating components, assuming a

parallel mean flow, and retaining only linear terms on the left hand side of the equation.
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This yields,

Dote' Ou_
D_ + -- = -w" (91)0xi

and

D7 -_- kd222 2 -- dx 3 3] (}/1 Jr- C axe -- ]'_!
(92)

with

Do 0 0
_ +u-- (93)

Dt Ot OXl

and

w" , Ore' .,, , Ou'i 2'Ore'
=ujomj and ]i ='uj_z j +c _ (94)

The double prime notation is used to denote terms that are second order in the fluctuations.

The term w" represents the net rate of work done at second order by the fluctuating pressure

on a fluid element. The term f[' is the same as that obtained by Goldstein, 17 being equivalent

to an externally applied force per unit mass acting on a parallel sheared mean flow. This

term may also be written,

= --gijk_tjCO h Jr- _ -- C2' OX i
(95)

' is the vorticity tensor. The first term in the totalwhere cij k is the alternating tensor and wk

fluctuating force (per unit mass) is called the "vortex force" (also written in vector notation

as u' x ¢o'). It is associated with the transport of rotating fluid elements by the fluctuating

velocity field. The second term is the force generated by the second order dynamic head. It

should be noted that this term is essentially the same single source term proposed by Tam and
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Auriault.1 Thelast term in Eqn. (95)isa sourceassociatedwith temperaturefluctuationsin

the turbulent flow asdiscussedby Testerand Morfey.18Note that c2' = ?'RT'. This source

term is an important component of the semi-empirical noise prediction model developed by

Morfey et al. 19 This last term appears as a source in the framework of an acoustic analogy.

However, it is readily identified as the ett?ct of sound propagation through a medium with a

fluctuating speed of sound.

Equations (91) and (92) could be rearranged into a single inhomogeneous equation for

rr', exactly in the form of Eqn. (90). However, in their unmanipulated fbrm it is easier to see

the equivalent sources in the momentum and energy equations. The source term F, given by

Colonius et al., 15 is reproduced exactly by this rearrangement 1 (To obtain the form given

by Colonius et al., 15 the source associated with speed of sound fluctuations is neglected as

are third and higher order terms.) The complexity of F is formidable. In its simplified fbrrn,

c >7 - 2 + (96)dx2 OxlOXj d0:3

This has been interpreted as a quadrupole source distribution with components referred to

as self'- and shear-noise. However, the form of source term given by Eqn. (96) is simply

the result of recasting the original inhomogeneous, linearized Euler equations given by Eqns.

(91) and (92). In that primitive form there is no source term, or by inference, no source

mechanism, associated with the mean velocity gradient, or any other mean flow property. All

equivalent source terms are second order in the fluctuations only. In summary, the acoustic

analogy tbrmed by Eqns. (91) and (92) describes acoustic radiation from a sheared mean

flow due to externally-applied forces and work performed on the fluid.

Since the source terms on the right hand sides of Eqns. (91) and (92) are not all in

1There appears to be a minor typographical error in the final source term component Vb, that should be

07r' u_ + '
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the tbrm of the divergence of a scalar, as in Tam and Auriault's model, 1 it is not possible

to Mlow the simplit)ing analysis of Eqns. (35) to (40). In addition, since there is more

than one source term, their correlation must be considered when the autocorrelation of the

far field pressure is tbrmed. Previous analyses have considered each source mechanism to

be statistically independent and that approach, though somewhat questionable, could be

followed.

The scaling of the source terms, based on the CFD solution, may also be addressed. The

first two components of I[' of Eqn. (95) should be scaled by

k/gs (97)

The last term should be scaled by

(Ts - ro) k
To Po _

(98)

where, T_ is the mean temperature in the source volume element. It should be noted that this

is only distinguished from the scaling tbr the first source terms (or the source term in Tam

and Auriault's model 1) by the local relative temperature dift?rence. Finally, the unsteady

work source term in Eqn. (91) should scale with

1 p_ k 3/2

C2oPo
(99)

There are several issues that remain to be addressed. Though the present paper has

considered the noise radiation at 90 ° to the jet axis, so that mean flow/acoustic interaction

eft_cts may be neglected, there are distinct ditI_rences between the traditional (Model I)

tbrmulation and Tam and Auriault's model 1 at other angles to the jet axis. In the latter
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model,the variationof spectraldensitywith polar angleis containedin the factor

[1+ - cos0/ o)2]
(100)

Away from the zone of silence there is little angular variation in (z2, z, at a given

frequency as shown by Tam and Auriault. 14 The factor in the denominator in Eqn. (100) is

a very weak function of polar angle. For example, with ft/Co = 1.0 there is only a 2 decibel

change in the spectral density tbr cJ/cJ_ = 1.0 and 0 = 60 ° relative to the value at 90 °. This

is consistent with the experimental spectra shown by Tam and Auriault. 14 However, the

traditional models based on Lighthill's acoustic analogy suggest a directivity that varies as

(1 - Mc cos0) -5. If we let Mc = 0.62Uffco (Goldstein r) then a relative change of 8 decibels

is predicted tbr the same conditions. This is much greater than the measured variation. Fur-

ther analysis by Goldstein r to include the mean flow effects changes the convection factor

from (1 - M_ cos 0) .5 to (1 - M_ cos 0) -3. This results in predictions tbr the direetivity of

the overall intensity in better agreement with experiment. In addition, in traditional models

based on the acoustic analogy, there is no separation of source mechanisms between con-

tributions from small-scale or large-scale turbulence. So predictions are made at all polar

angles tbr the same assumed source. Whereas, in Tam and Auriault's model, 14 predictions

are limited to angles approximately greater than 60 ° to the jet downstream axis. Closer to

the jet axis Tam and Auriault argue that a noise mechanism associated with the large-scale

turbulence is present. It should be noted that Model II based on the acoustic analogy, de-

scribed in Section 4, gives a convection factor identical to that of Tam and Auriault. The

reason tbr the difference is tied to the choice of two-point cross correlation factor fbr the

sources. In Model I the tbrm of the cross correlation is assumed in a moving ti'ame of ref-

erence. Whereas, in Model II, the tbrm of the cross correlation is assumed in a reference

frame fixed to the jet nozzle. The fact that the two models give different convection fac-

tors indicates that one or other of the assumed tbrms is incorrect or insufficiently accurate.
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The movingand fixed referenceframecrosscorrelationsare relatedsimply by a coordinate

transtbrmation.Soconsistentchoicesarepossibleand the final resultmust be independent

of the referenceframe. It is readily shownthat the usualGaussiantbrm of crosscorrelation

in the movingframegivesa fixed frame correlationthat is consistentwith Eqn. (71) and

measurements.Since,asnotedabove,the temporalvariationsof the sourcesthat determine

the soundradiation aremoreclearly identifable in a movingreferenceframe, it appearsto

be the appropriatechoice:and with its selectioncomesconvectiveamplification. Finally it

shouldbenotedthat the measuredtwo-pointcorrelationsshouldcontaincontributionsfrom

both the large-scaleand small-scaleturbulence.Thewavenumber/frequencyspectrumthat

providesthe distinction betweenradiating and non-radiatingcomponentsof the turbulent

field [seeEqn. (17)]shouldbeableto describeboth componentsif it ischosenappropriately.

The extraction of two-point correlationsfrom either experimentalor simulation data tbr

high speedjets, whereit knownthat the instability waveradiationis present,wouldbevery

illuminating. Thus,the issuesof the appropriateconvectionfactor andthe separatecontri-

butions,if they areseparate,of the small-scaleandlarge-scalenoisegenerationmechanisms

remainopenquestions.

In this paperwehavetried to reconcilethe apparentdifferencesbetweenmodelsbased

on the acousticanalogyand alternativemodels.Wehaveshownthat there is no difference

in the eventualnoisepredictiontbrmulasif consistentassumptionsaremadeconcerningthe

statistical propertiesof the turbulent noisesources. We have also proposedan acoustic

analogythat providesa clear representationof equivalentsourcemechanisms.We have

alsotried to identify someof the remainingissuesthat haveyet to be resolvedand have

proposedmeasurementsor simulationsthat wouldhelp to resolvetheseissues.The recent

reexaminationof modelsbasedon the acousticanalogy,muchof it promptedby the success

of the modelproposedby TamandAuriault1hasbeenveryvaluable.The authorshopethat

this paperwill stimulateturther work that will result in an improvedunderstandingof how

to predict radiatednoiseusingCFD simulations.
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7 Appendix. The Use of Generalized Differentiation

in the Algebraic Manipulation of Equation (78)

Consider the tbllowing integral depending on the variable y and a real variable

f(y)

oo

= / exp(-l.-yl+i/3x) dx (101)

y.

--OO

2 exp (i/3y)
- (102)

1 +/32

It is clear that the second derivative of the function on the left hand side of Eqn. (102) is

2/32 exp (i/3Y) (103)
d2f (Y) = f12@2 1 +

If we differentiate Eqn. (101) with respect to the variable y we obtain

oo

{exp(- Ix- yl + i/3x)}dx
--00

(104)

It might appear to be possible to split this integral into two parts giving,

y oo

d_ {exp(x - y + i/3x)}dx + -- {exp(-x
@2 @2

-- oo y

+ y + i/3z)}dx- 2exp(i/Jy) (105)
1+/32

This does not agree with the result given by Eqn. (103). To determine why this is we

note that the second derivative of the thnction exp (- Ix - y]) is discontinuous at z = y and

thus taking the second derivative inside the integral is not valid. We should have kept the

derivatives outside the integral, split the range of integration, and then used the Leibniz rule
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of dif'erentiationunder the integral signtwice to get,

exp - yl + &
oo

d 2

dy 2 f

-- 00

Y

2,22 exp (i/Jy)

1+/3 2
(106)

We have obtained the correct result but only at the expense of more algebraic manipulations.

We want to be able to obtain the correct result when we change the order of differentiation

and integration without the added burden of book-keeping when our integrand is discontin-

uous. This can be achieved as fbllows.

It is seen that f (y) is an analytic function. This means that ordinary and generalized

derivatives of this function are identical. However, we can exchange the order of integration

and generalized differentiation. Using a bar over the differentiation sign to denote generalized

differentiation, we have now the tbllowing mathematically correct manipulation:

oo

d2 f (y) = f d2 {exp (- lx - yl + i/3x) } dxdy 2 dy 2
-- CX)

O0

" c{2 {exp-lx-yl}eia_dxdx 2

-- CX)

O0

-- CX)

2_ 2 exp (i_y)

1 + f32
(107)

So we have obtained the same result as Eqn. (103).

In this paper we have obtained an equation similar to Eqn. (104) and then we claimed

that the second derivative with respect to the variable y must be treated as a generalized
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derivative.The purposeof this appendixis to justify this claim. Theroot of the problemin

Eqn. (104)is that the interchangeofthe orderof limit operationsof integrationandordinary

differentiationis not permissiblebecauseof the discontinuityof the secondderivativeof the

integrand at z = y. However, in this paper, we have freely interchanged the order of

integration and ordinary differentiation without any attempt at justification. For example,

consider the derivation of the relation,

< 02T_x 02Txx ) 04_Tg-(yl,tl)_Tg-(y2,t2) - Or 4 <Txx(yl,t) Txx(y2,ro)) (108)

x (y2 - yl)
ro = t+r+-. (109)

X Co

This is necessary in proceeding from Eqn. (6) to Eqn. (9) in the paper. We have performed

two integrations by parts with respect to t, replaced the fburth order differentiation with

respect to t with the same order differentiation with respect to r, and then we exchanged the

order of differentiation with the integration for time averaging (see Goldstein, 7 Appendix 2).

These operations can only be justified fbr integrands whose derivatives are continuous. More

precisely, the unitbrm convergence of the integrals must be considered. As has happened

in this paper, we may next introduce an algebraic expression for the statistical properties

of the turbulence and perform algebraic manipulations that involve bringing into integrals

derivatives of some order of a variable. VV_ can do this easily and without the burden of

the detailed analysis of classical calculus, exhibited in the manipulations of Eqn. (106), if

we treat all derivatives from the start as generalized derivatives. Practically all the analysis

remains the same except in situations like the exchange of the order of limit operations

where we must indicate generalized differentiation explicitly as we have done here. The

situation is completely analogous to linear aerodynamic theory where occasionally we have

to interpret divergent integrals as the finite part of divergent integrals. The reason is that

divergent integrals appear if improper exchange of the order of differentiation and integration

is pertbrmed. The finite part procedure gives the same result as if the derivative was kept
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outsidethe integral. The procedureitself is obtainedby assumingthat the derivativeis a

generalizedderivativeandcan,therefbre,be takeninsidethe integraland interpretedby the

rulesof generalizedfunctiontheory.

ReadersshouldconsultCanonicalRegularizationin Gelfandand Shilov,2°tbr the theo-

retical backgroundrelevantto the subjectof this appendix.
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Figure 2: Prediction of Spectral Density at 90° to the Jet Axis Using Model I Based on the

Acoustic Analogy Showing the Contribution to the Spectrum in One Diameter Slices. The
Contributions From Slices for the First Twenty Diameters are Shown in Alternating Solid

and Dashed Lines. x = 72Dj, Mj = 0.911, Tj/To = 0.975, Dj = 0.0508 m. (_ Q,
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Figure 3: Comparison With Experimental Data of the Predicted Spectral Density at 90 ° Co

the Jet Axis Using Tam and Auriault's Model. 1 z = 72Dj, Mj = 0.911, TyTo = 0.975,

Dj = 0.0508 m. [] [], Present prediction using coefficients determined by comparison

with Tanna et al. 11 data; O O, Prediction based on coefficients determined by Tam

and Auriaul@ • , Experiment, Tanna ¢t al. 11
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Figure 4: Comparison \¥ith Experimental Data of the Predicted Spectral Density at 90 ° to

the Jet Axis Using Models I and II Based on the Acoustic Analogy and Tam and Auriault's

Model. 1 z = 72Dj, IP/j = 0.911, Tj/To = 0.975, Dj = 0.0508 m. (_ 0, Model I;

A A, Model II; [] [], Tam and Auriault's Model; • , Experiment, Tanna et al.
11
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